Dynamic Anterior Stabilization of the Shoulder With Adjustable-Loop Device

Jose Carlos Garcia Jr., M.D., Ph.D., Ricardo Berriel Mendes, M.D., Paulo Cavalcante Muzy, M.D., Maurício de Paiva Raffaelli, M.D., and Marcelo Boulos Dumas e Mello, M.D.

Abstract: Dynamic anterior stabilization of the shoulder is a surgical procedure based on a triple soft-tissue block. This procedure is designed to fit within a gray zone between the Bristow-Latarjet procedure and the Bankart procedure, where the patient would not need a bone graft; however, capsular reconstruction alone may be insufficient to yield reliable stabilization. This article describes dynamic anterior stabilization of the shoulder using the adjustable-loop device.

Anterior shoulder instability remains one of the main issues within shoulder surgery. There are several studies showing that arthroscopic Bankart repair is successful in treating traumatic anterior shoulder instability without bone loss. On the other hand, glenoid bone loss greater than 21% to 25% and engaging lesions seem to present better results when bony procedures such as the Bristow and Latarjet procedures are performed, and both techniques present similar results. Some authors have suggested that other predictive factors—age at the first episode, sport, and so on—need to be considered when choosing the surgical procedure, whereas others have suggested that even 13.5% of glenoid bone loss can be deemed critical bone loss. Indeed, there is a gray zone in the treatment of anterior shoulder instability, which can be treated by both the Bankart and Bristow-Latarjet procedures.

Some authors have presented an arthroscopic belt-and-suspenders procedure combining principles of the Bankart and Bristow-Latarjet procedures to improve shoulder stability by using only soft-tissue stabilizers; however, this procedure is time-consuming, uses a large medial bone tunnel, and presents a recurrence rate of 8%. Many authors have reported that the long head of the biceps (LHB) does not have an important function related to shoulder stability. In addition, some studies have suggested that the LHB is just a vestigial structure, presenting a not suitable mechanic axis for not quadruped animals.

On the basis of these fundamentals, it seems more rational to use the LHB to provide both the sling and direct block effects. These 2 biomechanical stabilizer mechanisms in a lateralized fashion associated with the Bankart procedure can achieve better results in the aforementioned gray zone. Indeed, some authors have described performing this procedure using interference screws and anchors. The adjustable-loop device is a fixation method that allows a strong fixation and biologic healing. Thus, our technique joins the idea of the triple soft-tissue block of the dynamic anterior stabilization (DAS) with a better LHB healing condition by using the adjustable-loop device.

Surgical Technique

The patient is placed in the beach-chair position under general anesthesia. Through the standard posterior portal, the articular inspection is performed, and the lesions are examined under an arthroscopic view. An anteroinferolateral portal is created 1 cm inferior and just lateral to the standard anterior portal. The best location for this portal can be confirmed with a
16-gauge needle. The portal needs to be in line with the humeral head equator. Through this portal, the subscapularis tendon is gently opened in the direction of its fibers by using a Kelly device. At this moment, an electrocautery device and/or shaver is useful to widen the subscapularis split (Fig 1). A standard anterior portal is also created, through which the surgeon performs LHB tenotomy. The anterior glenoid rim is exposed, and the bone is shaved to expose the bone marrow, allowing better healing, similar to the Bankart procedure.

Thereafter, the scope is inserted into the anteroinferolateral portal. The scope moves downward in the direction of the pectoralis major insertion. Visualization of the axillary nerve is highly suggested at this point. Other instruments are inserted through the anterior portal. The optic is inserted into the anterior portal, and the LHB tendon is then pulled out just over the pectoralis major using a regular probe (Fig 2). Thereafter, the LHB is pulled out of the body through the anteroinferolateral portal by use of a grasper. If the surgeon does not release the LHB just over the pectoralis major, the LHB cannot present free motion, and the patient can lose movement after surgery.

Krackow sutures are placed on the LHB by use of high-resistance #5 Maxibraid (Zimmer-Biomet, Warsaw, IN) (Fig 3). A 4.5-mm drill is inserted using the guide of the DAS FastFit Button (Razek, São Carlos, Brazil) (Figs 4 and 5) through the subscapularis split, and the size of the glenoid is measured. Its insertion point is just medial to the anterior glenoid rim at the 3- to 4-o’clock position. If the LHB diameter is superior to 4.5 mm, the surgeon can make a vertical incision on the LHB in order to reduce its diameter for this tendon’s proximal 2 cm or can enlarge the hole by using a 5.5- or 6.5-mm drill for the initial 2 cm (Fig 4); sizes larger than those mentioned earlier are not recommended.

A perforated Kirschner wire is inserted with a No. 0 nylon wire using its blunt side from anterior to posterior to avoid nerve lesions (Fig 6). This nylon is used as a guide for the FastFit Button to be passed from anterior to posterior. The one side of the high-resistance wire inserted in the LHB passes within the loops of the FastFit Button. The FastFit Button is inserted through the subscapularis split on the anterior glenoid rim, and the LHB is sutured to the loop (Figs 7 and 8). The sutured LHB is pulled into the hole by pulling the terminal adjustable-loop device wires. This maneuver will drive and lock the loops and the sutured LHB into the hole; ideally, 2 cm within the hole is enough (Fig 9). Two 1.6-mm FastFit Anchors (Razek) are inserted above and under the LHB tendon through the subscapularis split by using a cannula in the anteroinferolateral portal, allowing the surgeon to perform labral
reconstruction (Fig 10, Video 1). Pearls and pitfalls of the described procedure are presented in Table 1.

Discussion

The sling effect is the main stabilizer of the shoulder in the Bristow and Latarjet procedures. It is responsible for 51% to 77% of the shoulder stabilization, depending on the upper-limb position. DAS of the shoulder provides the same soft-tissue benefits as the Bristow and Latarjet procedures associated with labral reconstruction in the Bankart procedure, presenting a triple soft-tissue block.

The key goals achieved using the described procedure are tension to the inferior part of the subscapularis during abduction and external rotation, a direct block effect of the LHB in its new position, and labral reconstruction (Fig 10, Video 1). Pearls and pitfalls of the described procedure are presented in Table 1.

Fig 4. (A) adjustable-loop device. (B) Long head of biceps. (C) High-resistance wire. (D) Terminal adjustable-loop device wires. (E) adjustable-loop device loops. (F) Drills. (G) Dynamic anterior stabilization guide: Drills: 4.5-mm drill for fast fit-Button and 2 drills to enlarge insertion hole, 5.5 mm and 6.5 mm, for wider biceps diameters.

Fig 5. Insertion of 4.5-mm drill (A) and dynamic anterior stabilization guide (B), with optics through posterior portal glenoid (C), humeral head (D).

Fig 6. Glenoid (A). No. 0 guide nylon (B). Perforated Kirschner (C). Optics through posterior portal.
reconstruction. This procedure changes the shoulder kinematics similar to the Latarjet procedure but with no bone block.17 Some biomechanical studies have shown that at end-range position for abduction and external rotation of the shoulder the capsule, conjoined tendon’s direct block and the sling effect can be the only responsible for the stability on the Latarjet procedure.13

A similar triple soft-tissue block was described using the conjoined tendon8 instead of the LHB. However, because of the large transverse area of the conjoined tendon, the interference screw needs to have a greater diameter, as does its introduction hole.

In other procedures involving the LHB, interference screws were used for fixation; however, some drawbacks of using interference screws are possible osteolysis and a smaller tendon–bone marrow contact area.18-20 Prior studies have used suture anchors16; however, suture anchors will present with inferior load to failure compared with the adjustable-loop device for many applications, and it is rational to think the same way about DAS. In addition, anchors are less predictable for changing LHB tendon tension. Insertion of 20 mm of the LHB tendon within the bone is desirable to keep its suitable tension.15 Table 2 presents a comparison between fixation methods.

For Bristow procedures medialization of the graft can increase recurrence rates of shoulder instability. Once DAS presents a similar biomechanic of Bristow

Fig 7. Glenoid (A), terminal adjustable-loop device wires (B), EndoButton loops (C), and high-resistance wire (D), with optics through posterior portal.

Fig 8. Glenoid (A), terminal adjustable-loop device wires (B), EndoButton loops (C), high-resistance wire (D), and long head of biceps (E), with optics through posterior portal.

Fig 9. Glenoid (A), long head of biceps (B), and humeral head (C), with optics through posterior portal.

Fig 10. Suturing of labrum, with optics through posterior portal.
procedure a more lateral position for insertion of the LHB, as suggested on this paper, will allow better shoulder stability.21

There is no consensus on the role of the dynamic stabilizers of the shoulder. Thus far, all biomechanical studies using cadavers have rendered ineffective dynamic assessments. Labral proprioception can also play an important and neglected role in shoulder stability.22

We suggest that the described procedure and similar procedures14-16,23 will add not just biomechanical stabilization24 but also tendon proprioception of the LHB; moreover, the subscapularis split can play an important role in shoulder stabilization.

Some authors have described a similar technique but with different, more demanding surgical steps and no attachment of the labrum.23 Reattaching the labrum is essential to our technique, and proprioception is one of the pillars behind the success of this technique; no preservation of the labrum and capsule can result in higher redislocation rates.22

Similarly to other authors, we believe that the LHB is a residual structure derived from the ancient coracoid bone in quadrupeds.12,25 In bipeds, this bone also followed the natural axis of the biceps originating from the coracoid process with 90° rotation of the original coracoid bone.12,25 Some primates do not present an LHB similar to that in humans, whereas in some, the LHB can even originate on the pectoralis major insertion or in the humeral head.26,27 Indeed, the real kinematic importance of the LHB is still controversial.

The described procedure will not substitute for bone block procedures when more than 20% of glenoid bone loss is present; instead, it will add more stability to the current soft-tissue procedures in the presence of smaller amounts of bone loss. It could also be useful in athletes and high-demand patients.1,4,7 Advantages and disadvantages of this procedure compared with other DAS procedures are presented in Table 2.

When performing the described procedure, it is possible to incorporate other procedures, such as

<table>
<thead>
<tr>
<th>Table 1. Pearls and Pitfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearls and Pitfalls</td>
</tr>
<tr>
<td>Anterolateral portal</td>
</tr>
<tr>
<td>Anteroinferolateral portal</td>
</tr>
<tr>
<td>LHB cutting</td>
</tr>
<tr>
<td>Assessment of superior portion of pectoralis tendon</td>
</tr>
<tr>
<td>Insertion point</td>
</tr>
<tr>
<td>Guide</td>
</tr>
<tr>
<td>Tunnel diameter</td>
</tr>
<tr>
<td>Anchor insertion</td>
</tr>
</tbody>
</table>

LHB, long head of biceps.

<table>
<thead>
<tr>
<th>Table 2. Comparison Between Fixation Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS Fixation</td>
</tr>
<tr>
<td>Interference Screw</td>
</tr>
<tr>
<td>Anchors</td>
</tr>
<tr>
<td>Adjustable-loop device</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intraoperative complications</th>
<th>Fracture of anterior glenoid, loosening of fixation of interference screw</th>
<th>Lower bicipital tension, Popeye deformity</th>
<th>Possible neurologic lesion if surgeon does not drill hole parallel to glenoid equator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative complications</td>
<td>Osteolysis</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Fixation</td>
<td>Strong</td>
<td>Intermediate</td>
<td>Strong</td>
</tr>
<tr>
<td>Biological integration</td>
<td>Intermediate</td>
<td>Intermediate</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

DAS, dynamic anterior stabilization.
remplissage. In addition, in case of failure of this procedure, it is possible to apply the Bristow or Latarjet procedure. There is a possibility of LHB tendon rupture, glenoid fracture, and cyst formation, although we have never observed these conditions. The surgical time to access the superior insertion of the pectoralis major is longer with this procedure than with the Bankart procedure. If the LHB is pathologic and presents areas of disruption, it can also be oversized in its intra-articular portion. In this case, opening the intertubercular ligament can be an option to release the LHB. In our opinion, this surgical procedure and similar procedures\(^{15,23}\) can fit exactly in the gray zone between the Bankart and Bristow-Latarjet procedures.\(^25\)

References

